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Abstract
We derive a formula connecting in any dimension the Green function on the
(D + 1)-dimensional Euclidean Rindler space and the one for a minimally
coupled scalar field with a mass m in the D-dimensional hyperbolic space.
The relation takes a simple form in the momentum space where the Green
functions are equal at the momenta (p0, p) for Rindler and (m, p̂) for hyperbolic
space with a simple additive relation between the squares of the mass and the
momenta. The formula has applications to finite temperature Green functions,
Green functions on the cone and on the (compactified) Milne spacetime.
Analytic continuations and interacting quantum fields are briefly discussed.

PACS numbers: 04.62.+v, 11.10.Kk

1. Introduction

The Green functions define quantum field theory in the Minkowski space as well as in the
curved space. In the Minkowski space the relation is one to one if we impose the restrictions of
locality and Poincare invariance. In the curved space the Green function is not unique. This is
a consequence of the non-uniqueness of the physical vacuum [1, 2]. There is less ambiguity for
the Green functions on the Riemannian manifolds (instead of the physical pseudo-Riemannian
ones). However, in the Euclidean approach [3–5] we can construct only a subset of quantum
field theories admissible on the pseudo-Riemannian manifolds. The Euclidean version on a
manifold can have more than one analytic continuation. The hyperbolic space can be continued
analytically either to de Sitter space or to anti-de Sitter space. In the case of the de Sitter and
anti-de Sitter spaces the relation between the Riemannian and pseudo-Riemannian approaches
is well understood (the Euclidean approach is distinguishing the ‘Euclidean vacuum’ also
known as the ‘Bunch–Davis vacuum’ [6]).

In this paper we discuss Green functions on the Euclidean version of the Rindler space
and on the hyperbolic space. The Euclidean Rindler space continues analytically either to

1751-8113/07/298535+10$30.00 © 2007 IOP Publishing Ltd Printed in the UK 8535

http://dx.doi.org/10.1088/1751-8113/40/29/023
mailto:zhab@ift.uni.wroc.pl
http://stacks.iop.org/JPhysA/40/8535


8536 Z Haba

the conventional Rindler space of an accelerated observer [7] or to the Milne space [2] which
plays an important role in the ‘ekpyrotic’ scenario [8]. de Sitter and anti-de Sitter spaces
can be considered as asymptotic solutions (near the singularity) of gravity and string models
(black branes [9], see also [10]). The Rindler space describes near the horizon geometry of
spacetime. We find that after a Fourier transformation in time the massless Green function in
the Rindler space is equal to the Green function in the hyperbolic space for a quantum field
with a mass m (related to p0). The relation can be extended to the Rindler Green function
with mass mR, but in such a case we have to take the Fourier transform in spatial coordinates
as well. Then, the Fourier transforms of both Green functions are equal for momenta (p0, p)

(Rindler) and (m, p̂) (hyperbolic).
The Green functions on the Rindler space have been discussed by many authors [1, 6,

11–13]. A requirement of the (twisted) periodic conditions relates Green functions on the
conical manifold [14–16] (a solution for the cosmic string [17, 18]) to the Rindler Green
functions and Rindler quantum fields at finite temperature (then there is no twist). These
Green functions have been studied by many authors (mainly in four dimensions) by means
of an eigenfunction expansion [19–22]. It seems however that the simple relations derived in
this paper have not been known before. The Green functions and quantum fields on de Sitter
and anti-de Sitter spaces have been discussed in many physics papers [10, 23–31] as well as
in mathematics [32–34].

2. Green functions

We are interested in metrics with a bifurcate Killing horizon in (D + 1)-dimensional pseudo-
Riemannian manifold N . This notion is defined (see [35] for details) by a Killing vector
vanishing on a (D − 1)-dimensional surface. The bifurcate Killing horizon locally divides
the spacetime into four wedges as the boost Killing field does it in the case of the Minkowski
space [7, 35]. We take as our starting point the Euclidean version of the Rindler approximation
of the metric on N :

ds2 ≡ gAB dxA dxB = y2(dx0)2 + dy2 + dx2. (1)

An analytic continuation x0 → ix0 transforms the metric (1) back into the pseudo-Riemannian
Rindler metric. The analytic continuation of both x0 → ix0 and y → it transforms the metric
(1) into the Milne metric [2].

Let

�N = 1√
g

∂AgAB√
g∂B (2)

be the Laplace–Beltrami operator on N (here g = det(gAB)).
We are interested in the calculation of the Green functions for a minimal coupling of the

scalar field

(−�N + m2)Gm
N = 1√

g
δ. (3)

A solution of equation (3) can be expressed by the fundamental solution of the diffusion
equation

∂τP = 1
2�NP (4)

with the initial condition P0(x, x ′) = g− 1
2 δ(x − x ′). Then

Gm
N = 1

2

∫ ∞

0
dτ exp

(
−1

2
m2τ

)
Pτ . (5)
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In order to prove equation (5) we multiply equation (4) by exp
(− 1

2m2τ
)

and integrate both
sides over τ applying the initial condition for Pτ .

In the metric (1) we have

�N = y−2∂2
0 + y−1∂yy∂y + �, (6)

where � is the Laplacian on Rn where n = D −1. After an exponential change of coordinates

y = exp u (7)

equation (3) reads (we denote the mass of the Rindler field by mR)(−∂2
0 − ∂2

u + exp(2u)
(−� + m2

R

))
Gm

R = δ(x0 − x ′
0)δ(u − u′)δ(x − x′). (8)

The metric (1) by means of the conformal transformation is related to the metric (dx0)2 +
ds2

H on R × HD , where

ds2
H = y−2(dy2 + dx2) (9)

(with x ∈ RD−1) is the Riemannian metric (the Poincare metric) on the hyperbolic space
HD = SO(D, 1)/SO(D).

The Laplace–Beltrami operator (2) for the hyperbolic space reads

�H = y2

(
∂2

∂y2
+

∂2

∂x2
1

+ · · · +
∂2

∂x2
n

)
− (n − 1)y

∂

∂y
. (10)

Let

Gm
H (X,X′) = y

n
2 y ′ n

2 Ĝm
H (X,X′), (11)

where X = (y, x). Then, Ĝm
H satisfies the equation(

−y∂yy∂y − y2� +
n2

4
+ m2

)
Ĝm

H = yδ(X − X′). (12)

In coordinates (7), equation (12) reads(
−∂2

u − exp(2u)� + m2 +
n2

4

)
Ĝm

H = δ(u − u′)δ(x − x′). (13)

We also consider the heat kernel for the hyperbolic space, i.e., the fundamental solution of the
diffusion equation

∂τP
H
τ = 1

2�HP H
τ , (14)

with the initial condition P0(X,X′) = 1√
g
δ(X − X′).

If we have the fundamental solution (14), then we can solve the equation for the Green
function

(−�H + m2)Gm
H = 1√

g
δ. (15)

Let us define

P H
τ (X,X′) = y

n
2 y ′ n

2 P̂τ (X,X′). (16)

Then, P̂ satisfies

−∂τ P̂τ = 1

2

(
−∂2

u − exp(2u)� + m2 +
n2

4

)
P̂τ , (17)

with the initial condition

P̂0(X,X′) = yδ(X − X′).
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Therefore Ĝ defined in equation (11) is expressed by P̂ :

Ĝm
H =

∫ ∞

0
dτ exp

(
−1

2
m2τ

)
P̂τ . (18)

We are prepared now to show a correspondence between the Green function for the Rindler
space and the Green function on the hyperbolic space. The correspondence could be guessed
on the basis of the conformal equivalence mentioned above equation (9) (see a discussion
of conformal invariance in [36–38]). In order to prove the relationship between the Green
functions let us consider the Fourier transform

Gm
R (x0, u, x; x ′

0, u
′, x′) = 1

2π

∫
dp0 exp(ip0(x0 − x ′

0))G̃m
R (p0, u, u′; |x − x′|). (19)

It follows from equations (8) and (13) that at mR = 0:

G̃0
R(p0, u, u′; |x − x′|) = Ĝm

H (u, u′; |x − x′|) (20)

if

p2
0 = m2 +

n2

4
(21)

(in this way the mass in the hyperbolic space acquires the meaning of a momentum in the
D + 1 dimension). Applying equations (8), (13) and (18), we obtain

G̃0
R(p0, u, u′; |x − x′|) =

∫ ∞

0
dτ exp

(
−τ

2
p2

0 +
τ

8
n2

)
P̂τ (y, x; y ′, x′) (22)

or

G0
R(x0, u, x; x ′

0, u
′, x′) =

∫ ∞

0
dτ(2πτ)−

1
2 exp

(
− 1

2τ
(x0 − x ′

0)
2 +

τ

8
n2

)
P̂τ (y, x; y ′, x′).

(23)

The relation can be extended to mR �= 0. Let us denote the Fourier transform of G(x)

by G̃(p). The Green function G̃(p) depends only on |p|. Let us denote the Fourier transform
of the massive Rindler Green function G̃mR

R (p0, u, u′; |x − x′|) in the x − x′ variable by
G̃mR

R (p0, u, u′; |p|). Then

G̃mR
R (p0, u, u′; |p|) = ˜̂Gm

H (u, u′; |p̂|) = GQ(|p̂|; u, u′), (24)

if in addition to equation (21) (expressing m by p0) the following relation is satisfied:

m2
R + p2 ≡ ω(p)2 = p̂2 (25)

(the momentum in the hyperbolic space acquires the meaning of the energy in the Rindler
space). On the rhs of equation (24) GQ(|p̂|) is the integral kernel A−1

Q of the quantum
mechanical Hamiltonian AQ (with an exponential potential)

AQ = −∂2
u + p̂2 exp(2u) + m2 +

n2

4
. (26)

Formula (24) can be rewritten in the configuration space. For this purpose we express p̂
on the rhs of equation (24) by ω(p) from equation (25). Then, the Fourier transform of
equation (24) can be expressed by means of a kernel KmR relating the massive Green function
to the massless one

GmR
R (x0, y, x; x ′

0, y
′, x′) =

∫
dx̂ KmR(x − x′, x̂)G0

R(x0, y, x̂; x ′
0, y

′, 0), (27)
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where

KmR(x − x′, x̂) = (A(n − 1))−1(2π)−n

×
∫

dp dp̂ exp(−ip̂x̂ + ip(x − x′))δ(|p̂| − ω(p))ω(p)−n+1 (28)

and A(n − 1) is the area of the (n − 1)-dimensional sphere of radius 1. In order to prove
equation (27) we take the Fourier transform of equation (27) in x. Then the remaining integral
over p̂ can be performed in spherical coordinates leading to formula (24).

3. Integral representation

The heat kernel Pτ (14) on the hyperbolic space has been calculated by many authors (see [39]
for a review; we have done the calculations by means of a probabilistic method [40] and our
results agree with those of [41]). It is a function of the Riemannian distance σ :

cosh σ ≡ z = 1 + (2yy ′)−1((x − x′)2 + (y − y ′)2).

We have for odd dimensions D = n + 1 = 2k + 3 (k = 0, 1, . . .) (where Pτ (y, x; y ′, x′) ≡
pτ (σ )):

p(k+1)
τ (σ ) = (−2π)−k exp

(
−n2

8
τ +

1

2
τ

) (
(sinh σ)−1 d

dσ

)k

p(1)
τ (σ ), (29)

with

p(1)
τ (σ ) = (2πτ)−

3
2 σ(sinh σ)−1 exp

(
−τ

2
− σ 2

2τ

)
, (30)

where (sinh σ)−1 d
dσ

= d
dz

.
In even dimensions D = n + 1 = 2k + 2:

p(k)
τ (σ ) = exp

(
−n2τ

8
+

τ

8

)
(−2π)−k

(
(sinh σ)−1 d

dσ

)k

p(0)
τ (σ ), (31)

where [42]

p(0)
τ (σ ) = exp

(
−τ

8

) √
2(2πτ)−

3
2

∫ ∞

σ

(cosh r − cosh σ)−
1
2 r exp

(
− r2

2τ

)
dr. (32)

Then the Green functions for the hyperbolic space read (n = 2k + 2, k = 0, 1, . . .),

Gm
H (y, x; y ′, x′)2k+2 = (−2π)−k

(
(sinh σ)−1 d

dσ

)k

(sinh σ)−1 exp(−νσ), (33)

where

ν =
√

n2

4
+ m2 (34)

and for an odd n,

Gm
H (y, x; y ′, x′)2k+1

= 2
√

2(2π)−
3
2 (−2π)−k

(
(sinh σ)−1 d

dσ

)k ∫ ∞

σ

(cosh r − cosh σ)−
1
2 exp(−νr) dr

= 2(2π)−
3
2 (−2π)−k

(
(sinh σ)−1 d

dσ

)k

Qν− 1
2
(cosh σ), (35)
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where the Legendre function Q has the integral representation [43]

Qα(z) =
∫ ∞

σ

(2 cosh r − 2z)−
1
2 exp

(
− (2α + 1)r

2

)
dr.

The Fourier transform in x0 of the massless Rindler Green function is equal to the
hyperbolic Green function with (see equations (20), (21) and (34))

ν = |p0|
in equations (33) and (35). Explicitly, for an even case n = 2k + 2 (D = n + 2) we have the
simple formula

G̃0
R(p0, y, x; y ′, x′)2k+2 = (−2π)−ky−k−1y ′−k−1

×
(

(sinh σ)−1 d

dσ

)k

(sinh σ)−1 exp(−|p0|σ). (36)

The massless Green function in (D + 1 = 2k + 4)-dimensional Rindler space can
be obtained either from equation (36) by means of the Fourier transform in p0 or from
equation (23) by a calculation of the τ -integral

G0
R(x0 − x ′

0, y, y ′; σ)2k+2 = (−2π)−k−2y−k−1y ′−k−1

×
(

(sinh σ)−1 d

dσ

)k

σ (sinh σ)−1

(
σ 2 + (x0 − x ′

0)
2

)−1

(37)

(for k = 0 the formula has been derived in [12, 14, 15, 44]).
In even dimensions D = 2k + 2 the formula for the Rindler Green function is more

complicated. From equations (23) and (32), we obtain

G0
R(x0 − x ′

0, y, y ′; σ)2k+1 = −(−2π)−k−1y−k− 1
2 y ′−k− 1

2

×
(

(sinh σ)−1 d

dσ

)k ∫ ∞

σ

(cosh r − cosh σ)−
1
2 r(r2 + (x0 − x ′

0)
2)−1 dr. (38)

We can extend the formulae to quantum field theory at finite temperature and to a
construction of Green functions (with a zero twist) on the conical manifolds [14, 22]. The
Euclidean Green functions at finite temperature are constructed [45] from G by an imposition
of the periodicity condition in time by means of the method of images. Applying the formula

∑
n

(
σ 2 + (x0 − x ′

0 + nβ)2

)−1

= π(2βσ)−1

(
coth

(
π

β
(σ + i(x0 − x ′

0))

)
+ coth

(
π

β
(σ − i(x0 − x ′

0))

))
,

we obtain (in four dimensions the formula has been derived by [13–15, 46])

G0
2k+2(x0 − x ′

0, y, y ′; σ)β = (−2π)−k−2y−k−1y ′−k−1

×
(

(sinh σ)−1 d

dσ

)k

sinh

(
2π

β
σ

)

×π(2β sinh σ)−1

(
cosh

(
2π

β
σ

)
− cos

(
2π

β
(x0 − x ′

0)

))−1

(39)
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and

G0
2k+1(x0 − x ′

0, y, y ′; σ)β = −(−2π)−k−1y−k− 1
2 y ′−k− 1

2

(
(sinh σ)−1 d

dσ

)k

×
∫ ∞

σ

dr sinh

(
2π

β
r

)
(cosh r − cosh σ)−

1
2 π(2β)−1

×
(

cosh

(
2π

β
r

)
− cos

(
2π

β
(x0 − x ′

0)

))−1

. (40)

The Green functions for the massive Rindler model at finite temperature (and for massive
fields on the conical manifold) are defined in equation (27). From equations (39) and (40) it
is easy to see that the massless Green functions at β = 2π coincide with the ones of the free
quantum field on the Euclidean space as they should because the metric (1) coincides with
the flat metric in polar coordinates when x0 is periodic with the period 2π . The momentum
of the finite temperature Rindler Green functions is discrete p0 = 2πlβ−1 in equation (36),
where l = 0,±1, . . . . Then in equation (35)

ν = 2π |l|β−1.

For β = 4π |l|(2k +1)−1, where k is a natural number, the Legendre functions are expressed by
elementary functions of z as in the case of the massless Green function on the D-dimensional
hyperbolic space.

4. An outlook:analytic continuation and quantum fields

We can discuss now analytic continuations of the Green functions as functions of the
Riemannian metric (1). The standard approach starts with a pseudo-Riemannian metric
[1, 2]. For a class of manifolds we can construct quantum fields and calculate their Green
functions. These Green functions can be continued analytically to the Riemannian metric (the
Euclidean region). Starting from the Riemannian metric we encounter some problems with
an analytic continuation, as discussed e.g. in [3]. There may be no analytic continuation to a
quantum field theory on a curved background or the analytic continuation may be not unique.
There is no difficulty in the case of free fields defined on static spacetimes (the problem of
an analytic continuation has been solved in [3]). The interacting fields in the flat spacetime
have an analytic continuation if their Euclidean version is Osterwalder–Schrader (OS) positive
(then the Minkowski version is Wightman positive). It has been noted some years ago (see
[4, 5] and references therein) that the reflection positivity of Green functions defined on
Riemannian manifolds allows us to construct quantum fields on some pseudo-Riemannian
manifolds although their physical meaning (in particular the particle interpretation) may be
obscure.

We discuss here solely analytic continuations of the Euclidean Rindler model. First, we
can continue, x0 → ix0. Then, we obtain the usual Rindler space. The continuation of Green
functions can be performed explicitly using equations (37) and (38) (and (27) for the massive
case). It can be seen directly from the Green functions (37) and (38) that they are OS positive
with respect to the reflection x0 → −x0 (this is so because (a2 + (x0 − x ′

0)
2)−1 is OS positive).

The analytic continuation could also be performed by means of the operator formalism as in [3]
(because the metric in the Laplace–Beltrami operator (6) is time independent). Next, we can
continue analytically x1 → ix1 (or equivalently any xk with k > 1). In such a case we obtain a
manifold which is conformal to R × AdS (or to S1× AdS for the periodic Green functions (39)
and (40)). Its Green function can be obtained explicitly in the even case (37). The odd case
(38) is more complicated for negative (time-like) z−1 = cosh σ −1. In such a case an analytic
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continuation of equation (38) is needed. We may use a definition of the Legendre function
in terms of the hypergeometric function for this purpose (see [43]) or consider the analytic
continuation of the Legendre functions directly from the integral representation [47]. The
reflection positivity of Euclidean Green functions (37) and (38) and the Wightman positivity
of quantum fields (as its consequence) are not obvious but shown in detail in [5, 31].

The third possibility is to continue analytically x0 → ix0 simultaneously with y → it .
In such a case we obtain the Milne space [2, 48]. An analytic continuation of equation (37)
gives the Green function for the Milne space in the odd case. Formula (38) for the even case
needs an analytic continuation (σ can be imaginary) by means of the hypergeometric function.
Analytic continuation of equations (39) and (40) gives the formula for the Green functions
of the compactified Milne space discussed in [38, 50, 51]. However, it is not clear whether
the analytically continued Green functions satisfy the Wightman positivity (i.e., if the model
defines quantum fields).

There is another way to construct an analytic continuation using the expansion in a
complete set of solutions of the Klein–Gordon equation. Then, the Euclidean Rindler Green
function is expressed in the form [1, 21, 48, 49]

G0
R(x0, y, x; x ′

0, y
′, x′)

= 8(2π)−D−1
∫

dp1 dp sinh(π |p1|)

× exp(−|p1||x0 − x ′
0| − ip(x − x′))Kip1

(|p|
√

y2
)
Kip1

(|p|
√

y ′2), (41)

where Kν(y) = K−ν(y) is the modified Bessel function of the third kind of order ν [43]
vanishing at infinity; the square root and the complex conjugation indicate the path of an
analytic continuation from y > 0 to y on the complex plane. The Green function (41) is
reflection positive with respect to the reflection θx0 = −x0, θy = −y if we extend it from the
Rindler wedge to y � 0 by equation (41). It is Wightman positive if the analytic continuation
y → it in equation (41) is defined by the formula

exp(−ip1(x0 − x ′
0) − ip(x − x′))Kip1(i|p|t)Kip1(i|p|t ′). (42)

The form of the two-point function resulting from the analytic continuation (42) coincides with
the one which we obtain if we expand the Rindler quantum field in creation and annihilation
operators (see e.g. [1]) and subsequently continue analytically the modes. We may have
difficulties with physical interpretation of quantum fields in a time-dependent metric. We
note however that in the Milne case at least in the limit t = exp(u) → 0 (u → −∞
in equations (7) and (8)) the quantum field splits into the positive and negative frequency
parts (as Kip1(i|p|t) 	 exp(ip1u) if u → −∞; for some other quantum fields in a time-
dependent metric see [24, 52]). However, we do not know whether the procedure of the
analytic continuation suggested here for the Milne model is unique. The resulting two-point
function may be different from the one which would have come from an analytic continuation
of equations (37) and (38). This problem is still under investigation [53].

As a next step an interaction could be defined which determines the S-matrix in terms
of the propagators. The relation between Rindler and (anti) de Sitter propagators (they are
equal in the momentum space, equation (20)) indicates that the two approximations for a
near horizon geometry may lead to equivalent physical results concerning scattering processes
(however we should keep in mind that when calculating with hyperbolic propagators we must
still integrate over the mass).
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